
A Time-Composable Operating System for the Patmos
Processor

Marco Ziccardi
Department of Mathematics

University of Padua
mziccard@math.unipd.it

Martin Schoeberl
Department of Applied

Mathematics and Computer
Science

Technical University of
Denmark

masca@dtu.dk

Tullio Vardanega
Department of Mathematics

University of Padua
tullio.vardanega@math.unipd.it

ABSTRACT
In the last couple of decades we have witnessed a steady
growth in the complexity and widespread of real-time sys-
tems. In order to master the rising complexity in the timing
behaviour of those systems, rightful attention has been given
to the development of time-predictable computer architec-
tures. The Patmos time-predictable microprocessor used
in the T-CREST project employs performance-enhancing
hardware while keeping the system analyzable. Time com-
posability, at both hardware and software level, is a consid-
erable aid to reducing the integration costs of complex ap-
plications. A time-composable operating system, on top of
a time-composable processor, facilitates incremental devel-
opment, which is highly desirable for industry. This paper
makes a twofold contribution. First, we present enhance-
ments to the Patmos processor to allow achieving time com-
posability at the operating system level. Second, we extend
an existing time-composable operating system, TiCOS, to
make best use of advanced Patmos hardware features in the
pursuit of time composability.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.4.1 [Operating Sys-
tems]: Process Management; D.4.8 [Operating Systems]:
Performance

Keywords
Real-time Operating System, Time Composability, Time Pre-
dictability

1. INTRODUCTION
Real-time systems pervade our everyday life. Their use

span multiple industrial sectors, including industrial appli-
cations, automotive, aerospace, and avionics. The process-
ing demand of modern real-time systems grows steadily:
the number of applications running on the same system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695685

as well as their need for computational resources keep in-
creasing. The complexity growth of real-time applications
is visible across the entire execution stack: (1) performance-
enhancing hardware (e.g., caches) is employed to enable
faster execution; (2) specialized real-time operating systems
(RTOS) are used to efficiently handle resource sharing. The
correctness of a real-time system must be assured in the
functional and time domains. In order to assess that a cer-
tain operation will always complete within a certain time
limit, timing analysis is used to provide an upper bound of
the worst-case execution time (WCET). Some hardware re-
sources employed by modern architectures exploit informa-
tion on the execution history to improve average case perfor-
mance. Such a history-dependent behavior considerably in-
creases the complexity of timing analysis techniques. Recent
research efforts have addressed the development of time-
predictable processor architectures (e.g., T-CREST [16]1 and
MERASA [18]) to make the worst-case fast while keeping
system behavior easy to analyze [14].

The ability to sustain incremental development for mod-
ern real-time systems is becoming a crucial asset to con-
tain the growing design, development and validation costs.
Incrementality, however, is only be granted when the ap-
plication’s timing behavior stays unchanged in the face of
system integration. In other words, the system should be-
have in a composable manner in the time dimension (thus
being a time-composable system) [12]. The processor re-
sources should not exhibit large time jitter as a result of his-
tory dependence or variations in the intensity of contention.
Similarly, RTOS services must be designed to ensure that
the analysis results computed for a program on a time-
predictable hardware platform continue to hold upon system
integration. That is, the RTOS must be time-composable
[7]. In [6], two properties of such a RTOS are identified:
(1) zero disturbance and (2) steady timing behavior. Zero
disturbance requires that the RTOS should not affect the
timing behavior of applications by altering the state of jit-
tery (state-dependent) hardware resources. Steady timing
behavior, instead, avoids significant variability in the exe-
cution time of the operating system’s services. To be time-
composable, these services have to be designed to always
take (near) constant time. To sustain their claim, the au-
thors of [6] present TiCOS, an open-source time-composable
RTOS conforming to the ARINC 653 standard.

Our work here makes two complementary contributions.
First, we identify the minimum set of hardware features

1Time-predictable Multi-Core Architecture for Embedded
Systems (http://www.t-crest.org/)

needed by a time-predictable architecture to support the ex-
ecution of a multi-threaded RTOS. Such features have been
investigated and implemented in the Patmos processor. Sec-
ond, we studied how hardware accelerators employed by a
time-predictable processor may impact the time composabil-
ity of an operating system. Means to exploit the increased
performance provided by such a processor, without nega-
tively affecting time composability, have been explored and
developed in TiCOS. Some accelerators, as scratchpad mem-
ories, have also been shown to facilitate the development of
constant-time services as well as to increase performance.

This paper is organized as follows: Sections 2 describes
background information on the Patmos processor and the
TiCOS operating system. Section 3 introduces some related
work. Section 4 presents extensions applied to the Patmos
processor while Section 5 details changes performed on the
TiCOS architecture. Section 6 presents our experimental se-
tups and the results obtained. Finally, Section 7 summarizes
our work and underlines its main contributions.

2. BACKGROUND
In this section we provide background knowledge on the

Patmos processor and the TiCOS operating system.

2.1 The Patmos Processor
Patmos [15] is a time-predictable, RISC processor for use

in real-time systems. Patmos features 32 general-purpose
and 16 special-purpose registers. The first special-purpose
register holds 8 1-bit predicate registers used for predicated
instructions. Local fast memories hold stack, data, and in-
structions to enhance performance while keeping the WCET
analysis simple. Besides a write-through data cache and
two scratchpad memories for instructions and data, also a
method cache and a stack cache are provided.

The method cache [13] is a special instance of an instruc-
tion cache: the replacement mechanism operates on func-
tion calls and returns. When a function is called all its
corresponding blocks are fetched into the cache. When a
function returns the blocks containing the code of the caller
are, if needed, fetched again.

The stack cache [4] is a dedicated cache meant to hold
stack allocated values. Data allocated on the stack is ac-
cessed very frequently and notably benefits from caching.
A stack frame allocated on the stack cache does not neces-
sarily have to be consistent with the main memory: once
a function returns its stack frame can be discarded. That
is, stack cache consistency is, in general, not needed. In
some situations, however, when the number of nested func-
tion gets large enough, some stack frames might be saved
(spilled) to memory to make room for more frames. When
the functions return, frames saved in main memory can be
restored. The stack cache is managed by the compiler via
three instructions in Patmos:

sres: on a function call, a stack frame of the required size
is reserved on the top of the stack and in the stack cache

sens: after a function returns, ensures the caller’s frame to
be in the stack cache (it may have been spilled to the main
memory)

sfree: pops the frame from the top of the stack and from
the stack cache.

The Patmos stack cache is placed in the local memory and
managed through 2 pointers saved to special-purpose regis-

ters: (1) st points to the top of the stack; (2) ss points to
the last element of the stack cache spilled to main memory.
In order to allocate aliased data, a secondary, non-cached
stack called shadow stack is used by the compiler.

2.2 The TiCOS Operating System
TiCOS [6] is a light-weight RTOS, derivative of POK [9],

and conforming with ARINC 653. The kernel has been mod-
ified and further extended to attain time composability. In
keeping with the ARINC 653 standard, the TiCOS kernel
supports partitions, the ARINC jargon for applications, each
of which can include one or more processes (a thread in AR-
INC speak). Partitions are time and space isolated. Space
isolation is obtained by granting to each partition its own
memory and disallowing shared memory. Time isolation is
attained by assigning to each partition a scheduling slot. A
two-level scheduling algorithm is provided: partitions are
selected out of a static scheduling table; the processes of an
active partition are scheduled in fixed-priority order. Servic-
ing in constant time removes jitter from the time behavior
of the RTOS. The TiCOS scheduler also enforces run-to-
completion semantics: a process can become ready at any
time of in the partition’s scheduling slot, but its activation
is deferred until the end of the currently running process.
That is, jobs issued by a process are never preempted by
other processes in the same partition.

Processes in a partition are allowed to synchronize via
ARINC 653 events. Events can be in one of two states: set
or reset. When an event is in the set state it allows all the
waiting processes to continue. When an event is in the reset
state all processes waiting for the event are blocked [17].

Inter-partition communication is enabled through ARINC
653 ports. Since partitions do not share memory, the ker-
nel is responsible for copying messages from source ports
to destination ports. Ports enable message passing and can
be a threat to time composability due to variability in the
size of exchanged data. To prevent jittery behavior inside
partitions, the data-dependent part of all port operations is
placed in the slack time between scheduling slots.

3. RELATED WORK
A number of operating systems, for example PikeOS [3],

INTEGRITY [1], LynxOS-178 [2], and XtratuM [11] iso-
late applications in time and space and provide support
for the ARINC 653 standard. However, isolation is imple-
mented in different ways. PikeOS, LynxOS-178 and Xtra-
tuM isolate applications through the adoption of virtual
machines. PikeOS runs different applications (hard real-
time, soft real-time, and non-real-time) on different virtual
machines. Scheduling is both priority- and time-driven so
that computing time not used by hard real-time tasks can
be re-allocated to non-real-time ones. LynxOS-178 divides
time in fixed-size slices according to ARINC 653 specifica-
tion. Memory isolation is guaranteed by dividing the ad-
dress space in blocks, each of which is assigned to a par-
tition. PikeOS, LynxOS-178 and XtratuM also enforce re-
source partitioning so that every resource is associated to
one and only one partition at any time. By doing this, a
fault can be handled in a single partition, without affecting
the others. However, while providing a more effective way
to isolate applications (also interrupts can be virtualized),
virtualization comes at the cost of more complexity at the
kernel services level, thus challenging time composability.

Similarly to TiCOS, INTEGRITY does not employ vir-
tual machines. Time isolation is realized in it through the
ARINC 653 two-level scheduling. Space isolation is im-
plemented using statically configured Memory Management
Units (MMU). MMUs configuration is never changed and
partitions are not allowed to share memory. INTEGRITY
kernel services always use resources owned by the calling
partition, no new objects are placed in memory to perform
system calls. As in TiCOS, OS services are executed on a
dedicated stack to prevent stack overflow and to allow user
processes to precisely specify their stack size. INTEGRITY,
as TiCOS, avoids recursion in kernel services so that kernel
stack size can be statically determined. While TiCOS places
message transfers for inter-partition communication in the
slack time between partitions, INTEGRITY uses partition
time to that end.

None of PikeOS, INTEGRITY or LynxOS-178 ensures
time composability of kernel services although they all pro-
vide isolation and support the ARINC specification. Con-
versely, CompOSe [10] is a composable operating system
targeting Multi-Processor Systems on Chip (MPSoC). Sim-
ilarly to TiCOS, CompOSe employs a two-level scheduler
to have different intra-application policies and exploits the
slack time for inter-application communication. However,
CompOSe does not support the ARINC standard.

4. PATMOS EXTENSIONS
In order to support time sharing of the processor and the

execution of an operating system, Patmos has been extended
with interrupts and stack cache manipulation instructions.
Other improvements, e.g., memory protection, are being in-
vestigated as part of current research.

4.1 Interrupts and RTC
Interrupts provide means for reacting to external events

by stopping the current flow of control and jumping to a
dedicated Interrupt Service Routine (ISR). Interrupts are
used by a RTOS to manage time and perform scheduling.
Usually, time management is performed via a tick counter
or programmable one-shot timer [6]. When a tick counter is
used, interrupts are periodically triggered and time manage-
ment routines are activated. This recurrent activation may
cause such routines to interfere with user applications. In
order to reduce this interference, a time-composable oper-
ating system should prefer interval timers to tick counters.
An interval timer can in fact be programmed to expire only
when required (e.g. partition switches). Modern architec-
tures provide ways to program timers to expire at specified
intervals. In order to have interval interrupts the Patmos
processor has been extended with a memory-mapped Real-
Time Clock (RTC). The Patmos RTC maps different regis-
ters to the local memory, as shown in Table 1. The interval
timer can be set by writing a value either to the Clock cycles
registers or to the Time in microseconds registers.

Interrupts are not only used for time management but
also to react to I/O events, to implement system calls, and
to handle exception states. In order to enable configuration
and handling of several types of interrupts and exceptions
Patmos has been further extended with a memory mapped
Exception Unit that supports a 32 entry exception vector to
specify ISR addresses. A trap instruction can be used by
an operating system to generate internal exceptions (e.g.,
for system calls). The trap instruction takes an immediate

Address I/O Device

0xf0000200 Clock cycles (lower 32 bits)
0xf0000204 Clock cycles (upper 32 bits)
0xf0000208 Time in microseconds (lower 32 bits)
0xf000020C Time in microseconds (upper 32 bits)

Table 1: Memory mapped RTC registers

operand and puts the processor in the corresponding excep-
tion state. When an exception occurs, regardless of its type,
the return address is saved to a special purpose register to
be subsequently used by the xret instruction to return from
the exception state to the interrupted control flow.

4.2 Stack Cache Manipulation
In a multi-threaded environment, context switching is used

to interleave parallel executions. On a context switch, the
state of the processor (context) for the currently executing
thread is saved. Then, the context of some other thread has
to be restored. In Patmos, the state of the stack cache is
part of the context of a thread; as such, it has to be stored
before and restored after a context switch.

To store a possibly inconsistent stack cache state (as the
one shown in Figure 1a) a new processor instruction, sspill,
has been added to Patmos. sspill takes an immediate or a
register parameter and saves the specified amount of stack
cache in main memory downward, starting from address ss.
The amount of stack stored in the stack cache and not per-
sisted in main memory yet can be easily computed as the
difference between the stack spill pointer ss and the stack
top pointer st. Figure 1 shows the execution of the sspill

instruction on a non-consistent cache state. Figure 1b shows
the state of the cache after sspill is executed.

To restore a context, also the state of the stack cache
has to be restored. To this end, the sens instruction has
been modified to accept a register parameter ssize. With
ssize = ss - st denoting the amount of thread’s space in
the the stack cache at the point of interruption, executing
sens ssize restores the state of the cache before interrup-
tion. ssize is always stored as part of the context.

5. TICOS EXTENSIONS
The TiCOS kernel is divided into two layers: arch and

core. While the arch layer contains all architecture-depen-
dent functionalities the core layer includes all kernel’s basic
functionalities that are used to implement ARINC services.
ARINC 653 processes, for instance, are implemented using
TiCOS core threads. The adaptation of the operating sys-
tem for the Patmos processor followed an incremental fash-
ion. First, the architecture-dependent layer has been devel-
oped and tested. Then, the core functionalities have been
adapted to the Patmos architecture. Incrementality enabled
a faster and less error prone development of the core layer.
Main changes to the arch layer regarded the definition of a
thread’s context and memory management. On the other
hand, in the core layer, the context switch mechanism has
been modified to handle Patmos local memories and the
bootloader has been extended to gain more flexibility.

5.1 Thread’s Context
The context of a thread in Patmos is made of the 32

general-purpose registers, the 16 special-purpose registers,
the state of the exception unit and the state of the stack

... ...

(*)Cached Stack (*)

...
Saved Stack

...

Main Memory Stack

Stack Cache

st

ss

(a) Stack cache inconsistency during execution

... ...

Saved Cached Stack

...
Saved Stack

...

Main Memory Stack

Stack Cache

ss, st

(b) Stack cache configuration after sspill instruction

Figure 1: Stack cache manipulation through the sspill instruction

cache. A C data structure is used to store all that state
information, along with the size of the cached stack ssize.

5.2 Memory Management
In TiCOS, each ARINC 653 partition is defined as a main

function responsible for creating all partition’s processes,
each of which is mapped to a TiCOS thread. In order to
initialize a partition, a main thread whose entry point is the
partition’s main function is created. The OS also employs
an idle thread, scheduled for execution when no other user
thread is ready. The Patmos compiler uses two types of
stacks, a cached stack and a shadow stack. To work prop-
erly, each thread has to be granted space for both stacks.

TiCOS is designed so that the maximum size of the stack
can be computed, for each thread, at development time.
System calls are, in fact, executed on dedicated kernel’s
stacks. In the absence of recursion the size of the stacks
for user threads can be therefore statically determined. At
development time, the user specifies the amount of mem-
ory each partition will require. In this memory area stacks
(cached and shadow) for all partition’s threads, communi-
cation buffers and ports are allocated. At system startup,
a cached and a shadow stack are also allocated for both op-
erating system calls and the idle thread. Threads contexts
are hold in a dedicated operating system data structure. A
pointer current_context always points to the entry in the
data structure holding the context of the currently running
thread. current_context is used by scheduling routines to
save and restore execution contexts.

5.3 Bootloader
An ARINC 653 system is made of several applications,

each assigned to a partition. TiCOS applications are com-
piled against the OS library into an independent executable
file. At system startup the operating system loads partitions
and, once loaded, retrieves partitions entry points to initial-
ize and start main threads. The process of loading partitions
executables can be carried out in several ways. Two loaders
have been implemented in TiCOS: a static bootloader and a
dynamic bootloader.

When the static bootloader is used, partitions are com-
piled first. The build script then compiles the kernel pro-
viding it with an array containing partitions entry points.
Finally, partitions are placed inside kernel’s executable. The
static bootloader is effective and fast. In fact, when parti-
tions are initialized by the OS they have already been loaded
in memory. However, effectiveness and speed detract from
flexibility: small changes in partitions code force the user to
re-compile both partitions and kernel.

The dynamic bootloader instead leverages Patmos I/O to

obtain more flexibility. The Patmos processor is equipped
with a memory-mapped Universal Asynchronous Receiver-
Transmitter (UART). The dynamic bootloader reads each
partition from the UART and places it at proper location
in memory. An executable file written in ELF [8] is made
of a number of segments described in the Program Header
Table. Segments represent information needed for runtime
execution of the program. In particular, segments of type
PT_LOAD correspond to .text and .data sections of the ELF
file and have to be loaded into memory. The stream format
expected by the bootloader for each partition contains first
the partition’s entry point and immediately after the num-
ber of loadable segments. Each segment is described by its
address, size and data. Since no memory virtualization is
implemented in Patmos, the address of a segment specifies
where the loader has to place it into main memory.

5.4 Context Switch
The context switch mechanism is designed to be as light

weight and simple as possible. Thread contexts are held in
a OS data structure and current_context pointer always
indicates the entry corresponding to the currently active
thread. When an interrupt occurs, either for I/O, timer
expire or system call, current_context is used to save the
current state of the processor. Conversely, after performing
scheduling decisions, current_context points to the thread
elected for execution. TiCOS enforces run-to-completion
semantics and employs a two level scheduling. First-level
scheduling occurs between partitions at each time slot end
and is activated by the timer interrupt. Second-level schedul-
ing arbitrates between threads inside a partition. Owing to
run-to-completion, thread switch within a partition is acti-
vated by an explicit system call. We can indeed distinguish
between two types of context switches: partition switch and
thread switch, as shown in Figure 2.

5.4.1 Partition Switch
When a partition slot ends a timer interrupt is raised and

the control flow is transferred to a dedicated interrupt ser-
vice routine. current_context points to the memory area
where to save the context of the currently executing thread.
After saving the context the timer interval is set to expire
at the next time slot end. Once the timer interval has been
set, a scheduling decision has to be performed: a new parti-
tion and a thread inside it have to be selected for execution.
Eventually, the context of the newly selected thread is re-
stored. The interrupt-driven context switch procedure is
outlined in Figure 2a.

Partitions are space isolated and represent different unit
of analysis. Partition switch can indeed exhibit a variable

Timer Interrupt

Save general

purpose registers

Compute cached

stack size (ssize)

Spill stack cache

Save special

purpose registers

Set next timer interval

Select partition

and thread

Restore general

purpose registers

Load ssize and

restore stack cache

Restore special

purpose registers

Return from interrupt

(a) Partition switch

System Call

Save general

purpose registers

Compute cached

stack size (ssize)

Spill stack cache

Save special

purpose registers

Dispatch system call

Select thread and

invalidate caches

Restore general

purpose registers

Load ssize and

restore stack cache

Restore special

purpose registers

Return from interrupt

(b) Thread switch

Figure 2: Control flow of a context switch

timing behavior without affecting results computed in the
analysis. Therefore, the data-dependent part of all port op-
erations (that can exhibit variable latency) is performed at
partition switches.

5.4.2 Thread Switch
A thread switch inside a partition is explicitly requested,

for instance, at the time of the periodic release of an AR-
INC 653 process. Explicit context switch can only be re-
quested by kernel services. When a system call is executed,
the context of the caller is saved. After saving the context
the kernel service corresponding to the system call is exe-
cuted. The kernel service might, possibly, invalidate data
and method cache and select a new thread inside current
partition to be executed. That is, the location pointed by
current_context might change. Once the kernel service is
executed the context has to be restored. Restoring the con-
text, if current_context changed, causes the need to restore
the context of a new thread. The thread switch procedure,
starting from the system call, is shown in Figure 2b.

6. EVALUATION
We performed a number of experiments to assess whether

the new implementation of TiCOS for the Patmos processor
preserved time composability between kernel services and

 2600
 2800
 3000
 3200
 3400
 3600
 3800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e
cu

ti
o
n
 t

im
e
 (

cy
cl

e
s)

Thread switch

2 Partitions of 2 Threads

ISPM No ISPM

 2600
 2800
 3000
 3200
 3400
 3600
 3800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
x
e
cu

ti
o
n
 t

im
e
 (

cy
cl

e
s)

Thread switch

4 Partitions of 2 Threads

Figure 3: Constant-time thread switch under various work-
loads

applications. In particular, we wanted to provide experi-
mental evidence that the steady timing behavior property
of scheduling primitives is preserved. Measurements for ex-
plicit context switch have been collected. While in [6] thread
selection and thread status update routines were analyzed,
in our experiments we measured end-to-end thread switches
(from system call interrupt to the return from interrupt) to
ascertain whether the context switch time holds constant.

Patmos is implemented in Chisel [5], a hardware-construc-
tion language developed at the UC Berkeley and embedded
in the Scala programming language. The Chisel back-end
can generate both Verilog and C++ code. The C++ code
implements a fast cycle-accurate simulator of the hardware.
The Chisel simulator of Patmos has been modified to be able
to collect traces without instrumenting kernel or application
code, thus not affecting the timing behavior of either the
kernel or the application.

We recall that TiCOS employs an idle thread, a main
thread for each partition and a thread for each ARINC pro-
cess. Experimental results have been collected under differ-
ent workloads (in parentheses the total number of threads
created is specified): 2 partitions of 2 processes (7 threads)
and 4 partitions of 2 processes (13 threads). Experiments
have also been designed to exhibit a strictly periodic behav-
ior so that a limited number of runs is enough to provide
experimental evidence of steady timing behavior.

Patmos contains a 1 KB instruction scratchpad memory
(ISPM). TiCOS can be configured to use the ISPM by plac-
ing kernel routines in it, thus potentially reducing kernel ser-
vices execution times. In the experimental setup the stack
cache has been disabled. The sspill instruction, in fact,
may introduce variability. To attain time-composability at
the kernel level sspill should be enforced to always take
constant time.

In the experimental setups, partitions contain 2
threads. The first thread switch occurs between two user
threads while the second context switch selects the idle thread
for execution. Figure 3 shows that the first thread switch in
a partition is more expensive than the second one. That is,
switching to a user thread in the partition costs more than
switching to the idle thread since it requires updating the
next thread’s deadline. Furthermore, Figure 3 shows that
switching to a partition’s thread, as well as switching to the
idle thread, holds constant across partitions and across ex-

No ISPM ISPM Gain

Switch to Thread 3652 2916 20.1%
Switch to Idle 3632 2900 20.1%

Table 2: Constant time thread switch in clock cycles for
both ISPM enabled and disabled

perimental setups. Without using the ISPM, switching to
a thread inside the partition takes 3652 clock cycles while
switching to the idle thread costs 3632 cycles. When the
ISPM is used instead, switching to a thread takes 2916 clock
cycles while switching to the idle thread costs 2900 cycles.
Experimental results for thread switch are summarized in
Table 2. Thread switch costs 20.1% less when ISPM is used.
However, as the current ISPM cannot hold all thread switch
code, increasing its size might allow for a further perfor-
mance increase.

7. CONCLUSIONS
Real-time applications are increasing in complexity. The

costs of development and qualification grow with the rise in
complexity. Time-predictable architectures provide
performance-enhancing features while maintaining the sys-
tem analyzable. Development costs can be lowered by build-
ing the system incrementally. Incremental development needs
a time-composable execution platform to build on, so that
the timing behaviour of an application verified in isolation
is not jeopardized by integration with other software.

In this paper we presented the adaptation of the TiCOS
time-composable operating system to the Patmos processor.
Support for time-predictable hardware features, such as the
stack cache, has been provided in TiCOS, identifying and
addressing challenges to time-composability. This paper also
presented hardware features (e.g., interrupts) that have been
introduced in Patmos to support the execution of a time-
composable OS.

The results show that steady timing behavior has been
preserved for what concerns scheduling primitives. More-
over, this paper shows how the adoption of an instruction
scratchpad may increase the application performance by re-
ducing context switch cost. ISPM, in fact, guarantees fast
instruction fetch without challenging time-composability.

Source Access
The code of the operating system, the processor, the proces-
sor simulator, and the compiler are open source and available
at: https://github.com/t-crest.

8. REFERENCES
[1] INTEGRITY.

www.ghs.com/products/rtos/integrity.html.

[2] LynxOS-178.
www.lynuxworks.com/rtos/rtos-178.php.

[3] PikeOS. www.sysgo.com/products/pikeos-rtos-and-
virtualization-concept/.

[4] S. Abbaspour, F. Brandner, and M. Schoeberl. A
time-predictable stack cache. In Proceedings of the 9th
Workshop on Software Technologies for Embedded and
Ubiquitous Systems, 2013.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee,
A. Waterman, R. Avizienis, J. Wawrzynek, and

K. Asanovic. Chisel: constructing hardware in a scala
embedded language. In P. Groeneveld, D. Sciuto, and
S. Hassoun, editors, DAC, pages 1216–1225. ACM,
2012.

[6] A. Baldovin, E. Mezzetti, and T. Vardanega. A
time-composable operating system. In WCET, pages
69–80, 2012.

[7] A. Baldovin, E. Mezzetti, and T. Vardanega. Towards
a time-composable operating system. In Ada-Europe,
pages 143–160, 2013.

[8] T. T. I. S. Commitee. Executable and Linking Format
(ELF) Specification. http://pdos.csail.mit.edu/6.
828/2012/readings/elf.pdf, May 1995.

[9] J. Delange and L. Lec. Pok, an arinc653-compliant
operating system released under the bsd license. 13th
Real-Time Linux Workshop, 10 2011.

[10] A. Hansson, M. Ekerhult, A. Molnos, A. Milutinovic,
A. Nelson, J. Ambrose, and K. Goossens. Design and
implementation of an operating system for composable
processor sharing. Microprocess. Microsyst.,
35(2):246–260, Mar. 2011.

[11] M. Masmano, I. Ripoll, A. Crespo, J. Metge, and
P. Arberet. XtratuM: An open source hypervisor for
TSP embedded systems in aerospace. In DASIA 2009.
DAta Systems In Aerospace., May. Istanbul 2009.

[12] P. Puschner and M. Schoeberl. On composable system
timing, task timing, and wcet analysis. In In
International Workshop on Worst-Case Execution
Time Analysis, 2008.

[13] M. Schoeberl. A time predictable instruction cache for
a java processor. In In On the Move to Meaningful
Internet Systems 2004: Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2004), volume 3292 of LNCS, pages 371–382.
Springer, 2004.

[14] M. Schoeberl. Time-predictable computer
architecture. EURASIP J. Embedded Syst.,
2009:2:1–2:17, Jan. 2009.

[15] M. Schoeberl, P. Schleuniger, W. Puffitsch,
F. Brandner, C. W. Probst, S. Karlsson, and
T. Thorn. Towards a time-predictable dual-issue
microprocessor: The Patmos approach. In First
Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems
(PPES 2011), pages 11–20, Grenoble, France, March
2011.

[16] M. Schoeberl, C. Silva, and A. Rocha. T-CREST: A
time-predictable multi-core platform for aerospace
applications. In Proceedings of Data Systems In
Aerospace (DASIA 2014), Warsaw, Poland, June 2014.

[17] S. Thompson, G. P. Brat, and A. Venet. Software
model checking of arinc-653 flight code with mcp. In
NASA Formal Methods, pages 171–181, 2010.

[18] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat,
Z. Petrov, C. Rochange, E. Quiñones, M. Gerdes,
M. Paolieri, and J. Wolf. Merasa: Multi-core execution
of hard real-time applications supporting analysability.
Micro, IEEE, 30(5):66–75, 2010.

